Tumor necrosis factor-related apoptosis-inducing ligand induces monocytic maturation of leukemic and normal myeloid precursors through a caspase-dependent pathway.
نویسندگان
چکیده
Treatment of the human HL-60 cell line with tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resulted in rapid (6-24 hours) cytotoxicity associated with progressive maturation of the surviving cells along the monocytic lineage. The occurrence of monocytic maturation was demonstrated by a significant increase of both CD14 and CD11b surface expression, the acquisition of morphologic features typical of mature monocytes, and phagocytic capacity in TRAIL-treated cultures. By using selective pharmacologic inhibitors, it was possible to demonstrate that activation of the caspase cascade played a crucial role in mediating TRAIL cytotoxicity and monocytic maturation of HL-60 cells. Moreover, experiments performed using agonistic polyclonal antibodies, which mimic the interactions between TRAIL and each TRAIL receptor, indicated that TRAIL-R1 was responsible for mediating the TRAIL-induced maturation. Importantly, the maturational effects of TRAIL were observed also in primary normal CD34(+) cells, seeded in serum-free liquid cultures for 4 to 8 days in the presence of SCF + GM-CSF. After treatment with TRAIL for 3 additional days, a significant increase in CD14 and CD11b expression, coupled with an increased number of mature monocytes and macrophages, was noticed in the absence of cytotoxicity. These data disclose a novel role for TRAIL as a positive regulator of myeloid differentiation. Moreover, the dichotomous effect of TRAIL on malignant cells (early induction of apoptosis and monocytic maturation of the surviving cells) might have important therapeutic implications for the treatment of acute myeloid leukemia.
منابع مشابه
TNF-related apoptosis-inducing ligand (TRAIL) induces monocytic maturation of both leukemic and normal myeloid precursors via a caspase-dependent pathway Running title: Maturative effects of TRAIL Scientific Section Heading: Hematopoiesis
متن کامل
Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells.
Interactions between histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as Apo2 ligand, were examined in human leukemia cells (e.g., U937, Jurkat, and HL-60). Simultaneous exposure of cells to 100-ng/ml TRAIL with either 1-mM sodium butyrate or 2- micro M suberoylanilide hydroxamic acid resulted in a striking increase in leukemi...
متن کاملActivation of PKC-ε counteracts maturation and apoptosis of HL-60 myeloid leukemic cells in response to TNF family members
Protein kinase C (PKC)-ε, a component of the serine/threonine PKC family, has been shown to influence the survival and differentiation pathways of normal hematopoietic cells. Here, we have modulated the activity of PKC-ε with specific small molecule activator or inhibitor peptides. PKC-ε inhibitor and activator peptides showed modest effects on HL-60 maturation when added alone, but PKC-ε activ...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 100 7 شماره
صفحات -
تاریخ انتشار 2002